Form factor expansions in the 2D Ising model and Painlevé VI

نویسندگان

  • Vladimir V. Mangazeev
  • Anthony J. Guttmann
چکیده

We derive a Toda-type recurrence relation, in both highand low-temperature regimes, for the λ-extended diagonal correlation functions C(N,N;λ) of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painlevé VI (PVI) theory, originally discovered by Jimbo and Miwa. This greatly simplifies the calculation of the diagonal correlation functions, particularly their λ-extended counterparts. We also conjecture a closed form expression for the simplest off-diagonal case C±(0,1;λ) where a connection to PVI theory is not known. Combined with the results for diagonal correlations these give all the initial conditions required for the λ-extended version of quadratic difference equations for the correlation functions discovered by McCoy, Perk and Wu. The results obtained here should provide a further potential algorithmic improvement in the λ-extended case, and facilitate other developments. © 2010 Elsevier B.V. All rights reserved. * Corresponding author. E-mail addresses: [email protected] (V.V. Mangazeev), [email protected] (A.J. Guttmann). 0550-3213/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysb.2010.05.021 392 V.V. Mangazeev, A.J. Guttmann / Nuclear Physics B 838 [PM] (2010) 391–412

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

The critical equation of state of the 2D Ising model

We compute the 2n-point coupling constants in the high-temperature phase of the 2d Ising model by using transfer-matrix techniques. This provides the first few terms of the expansion of the effective potential (Helmholtz free energy) and of the equation of state in terms of the renormalized magnetization. By means of a suitable parametric representation, we determine an analytic extension of th...

متن کامل

THE RADIUS OF CONVERGENCE AND THE WELL-POSEDNESS OF THE PAINLEVÉ EXPANSIONS OF THE KORTEWEG-DE-VRIES EQUATION Short Title: Well Posedness of Painlevé expansions

In this paper we obtain explicit lower bounds for the radius of convergence of the Painlevé expansions of the Korteweg-de-Vries equation around a movable singularity manifold S in terms of the sup norms of the arbitrary functions involved. We use this estimate to prove the well-posedness of the singular Cauchy problem on S in the form of continuous dependence of the meromorphic solution on the ...

متن کامل

Magnetic susceptibility of the 2D Ising model on a finite lattice

Form factor representation of the correlation function of the 2D Ising model on a cylinder is generalized to the case of arbitrary disposition of correlating spins. The magnetic susceptibility on a lattice, one of whose dimensions (N) is finite, is calculated in both paraand ferromagnetic regions of parameters of the model. The singularity structure of the susceptibility in the complex temperat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010